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We examine the hydromagnetic stability of a radially stratified fluid rotating 
between two coaxial cylinders, with particular emphasis on the case when the 
angular velocity greatly exceeds both buoyant and Alfv6n frequencies. If the 
magnetic field is predominantly azimuthal instabilities then have an essentially 
non-axisymmetric and wavelike character. Various bounds on their phase speeds 
and growth rates are derived, including a ‘quadrant’ theorem analogous to 
Howard’s semicircle theorem for Kelvin-Helmholtz instability. Their strong 
tendency to propagate against the basic rotation (i.e. ‘westward ’), previously 
noted by the author in the study of a more simplified (homogeneous) model, 
seems relatively insensitive to the generation mechanism (e.g. unstable gradient 
of magnetio field, angular velocity or density), but a number of counterexamples 
show that this constraint need not apply if the magnetic field displays significant 
spatial variations of direction as well as magnitude and that eastward-propagat- 
ing amplifying modes are then possible. 

1. Introduction 
I n  a recent paper (Acheson 1972, hereafter referred to as A) the author has 

examined a class of hydromagnetic instabilities in a uniformly rotating homo- 
geneous incompressible fluid that arise from variations of the (azimuthal) 
magnetic field with distance from the rotation axis. At low values of the para- 
meter 9 = V/QR these assume the form of non-axisymmetric ‘slowy hydro- 
magnetic waves, with both frequency and growth rate typically of order V2/QB2 

(see, for example, Acheson & Hide 1973), and propagate against the basic rota- 
tion. Here V denotes a typical Alfvhn speed, Q the angular velocity of rotation 
and R a dimension of the system. The possibility that within the earth’s liquid 
core such waves may be responsible, in part at  least, for the slow westward drift 
with time of the geomagnetic field (see, for example, Hide & Stewartson 1972) 
gains support from the above constraint on their azimuthal propagation, and 
in attempting here to take some account of additional effects due to buoyancy 
and differential rotation we try to bridge the gap between the highly idealized 
system of A and current ideas concerning the dynamically important agencies 
within the core (see, for example, Roberts & Soward 1972). It proves expedient 
from a mathematical viewpoint to take, as in A, cylindrical (rather than spherical, 

t Present address : Mathematical Institute, University of Oxford. 
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as a strict regard for the geophysical problem would require) boundaries for our 
simplified model. While the whole question of how sensitive the results are to the 
boundary conditions is as yet unresolved, a few remarks on the matter are made 
in 47. 

The basic stability problem is formulated mathematically in $ 2 (see equation 
(2.6) for the equilibrium configuration). An axial shear flow U,(r) is carried in 
this formulation with little extra expense in terms of algebraic manipulation, 
although its effects are investigated only briefly in the appendix. An elementary 
extension of some results by Howard & Gupta (1962) is presented there and a 
non-hydromagnetic analogue of one of the main themes of both this paper and 
A, namely that (when rapidly rotating) the system is far more unstable to non- 
axisymmetric than symmetric disturbances, is noted. While an investigation of 
axisymmetric instability ($  3) is therefore a little academic a t  rapid rotation 
speeds, the physical interpretation following the instability criterion (3.5) 
provides a clear picture of why non-axisymmetric modes are so much more 
readily excited. In  $4 it is shown that in a uniformly rotating fluid permeated by 
an azimuthal magnetic field all amplifying waves propagate westward, whether 
generated by an unstable gradient of magnetic field, density or both.? In  a non- 
uniformly rotating fluid the constraint on their azimuthal propagation is 
naturally rather less stringent, but amplifying waves nevertheless always pro- 
pagate westward relative to the fastest rotating portion of the $&?, despite the 
fact that they may then be deriving their energy from any one (or more) of 
three quite different sources. General conditions necessary for the amplification 
of non-axisymmetric modes are established in $5 (see equation (5.5)). In  the 
latter parts of both $44 and 5 attention is focused on the ‘slow ’ waves character- 
istic of a rapidly rotating fluid and elementary bounds on their phase speeds 
and growth rates (see (4.9) and (5.9)) are derived. In  $ 6  the general results of 
the preceding sections are illustrated by two specific examples, which show that 
the sense of azimuthal propagation is not entirely insensitive to the magnetic 
field configuration and that there are circumstances in which amplifying waves 
may propagate towards the east. 

2. Mathematical formulation 
When all transport processes (i.e. viscosity, electrical resistance, thermal 

diffusion etc.) can be neglected the basic hydromagnetic equations governing 
the motion of an incompressible fluid are 

1 
p ($+u.Vu) = - V p + -  P B.VB+pg, 

aB/at = V x (U x B), (2.2) 
V.U = 0,  V.B = 0, (2.317 (2.4) 

ap/at+u.vp = o ( 2 . 5 )  
(see, for example, Chandrasekhar 1961). Here p denotes the local fluid density, 
u the Eulerian velocity vector, t time, ,u magnetic permeability, B magnetic 

t See ‘Note added in proof’, part (i), p. 623. 
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field, g acceleration due to gravity and p = p p  + &,r1B2 is the ‘total’ pressure, 
including both the actual fluid pressure p p  and the magnetic pressure &,~-1B2. 

Referring all quantities to  a set of cylindrical polar co-ordinates ( r ,  8, z ) ,  the 
basic equilibrium state 

uo = (0, Ue(r), W)}? B, = (0, &(d, BZ(7“)}, Po = Po(r), (2.6) 

representing a spiralling flow in the presence of radial gradients of both magnetic 
field and density, is an exact solution of (2.1)-(2.5) provided that the gravita- 
tional body force g = (g(T),  0,O) per unit mass is purely radial. The gravitational 
and centrifugal forces, together with the radial component of the ‘tension’ in 
the ‘equivalent elastic strings ’ associated with the curvature of the magnetic 
field lines are exactly balanced by a radial pressure gradient 

We here consider the stability of such a flow between two coaxial cylinders of 
infinite length, radii r1 and r2. 

Thus if we slightly disturb the system the linearized forms of (2.1)-(2.5) admit 
solutions in which (by virtue of the equilibrium configuration (2.6)) all pertur- 
bation quantities q5 may be written as 

= a[&r )  exp i (m8 + nz - c t ) ] ,  (2.8) 
where my n and cr are constants. The last of these (which may be complex) 
represents the frequency of oscillation as seen by an inertial observer, and it 
will prove convenient to define a Doppler-shifted frequency 

w(r)  = cr-mU,lr-nV,, (2.9) 

which is that measured by an observer rotating with the local angular velocity 
of the fluid and moving in the z direction with the local axial flow. 

Subject to the Boussinesq approximation, in which the basic gradient of 
density is supposed so weak that po may be treated as constant and replaced by 
its mean value po everywhere in (2.1) save in the buoyancy term, we eliminate 
all perturbation variables in favour of the radial velocity component q ( r ) .  Thus, 
defining the local Alfv6n speeds 

6(r) B f 3 ( r ) / ( ~ ~ O ) B 7  %(r)  Be(r)/(ppO)BY (2.10) 

the Brunt-Vaisalg frequency 

(2.11) 

(which is real if the density distribution is ‘ bottom-heavy ’ but purely imaginary 
otherwise) and the functions 

F(r)  = (m&/r + nQ2 - w2, (2.12) 

Q(r) 3 2 [7~+:(?+...)1 , 

G(r) = F +r(s)’-r ( z ) ’ + N 2 - y ,  Q2 

(2.13) 

(2.14) 

39-2 
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all of which have dimension (frequency)2, we find 

where 

+ H$ = 0, ( 2 . 1 5 ~ )  

m2 
n2r2 

r 2 n 2 + 1 + 2 m 2 + - ( m 2 - i )  2mQ + 
r2 + m2n-2 - r 2  + m2n-2 

(2.15b) 

Here @(r)  = ia,/u and primes denote differentiation with respect to r.  In  view 
of the boundary conditions solutions of (2.15) are subject to $(r,) = @(r,)  = 0.  
We emphasize here that (except in the appendix) we take U, = 0, with two 
simple consequences for the above equations: the final terms in (2 .9 )  and (2 .15b)  
vanish. 

In the two examples of 5 6 it proves more helpful to formulate the problem in 
terms of the perturbations 9 to the total pressure, in which case 

takes the place of ( 2 . 1 5 ~ ~ )  and is subject to the boundary conditions 

jY + (mQ/rF) 9 = 0 at r = rl ,  r2. (2 .16b)  

3. Stability with respect to axisymmetric disturbances 

azimuthal, i.e. V ,  = 0. When m = 0 equation ( 2 . 1 5 ~ ~ )  reduces to 
We confine attention here to the case in which the magnetic field is purely 

where 

and w becomes identical with the (constant) frequency Q measured by an inertial 
observer (see equation (2.9)). Introducing the transformation 5 = d$ we find 

On multiplying (3 .3)  by the complex conjugate of 5 and integrating over the 
interval rl < r < r2 (making use of the boundary conditions fl(rl) = &r2) = 0) we 
have 

from which it is clear that u2 is real and that disturbances therefore either oscil- 
late about the equilibrium position without amplifying (02 > 0) or grow aperiodi- 
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cally (02 < 0). Thus if L(r) has the same sign throughout the interval r, < r < r2, 
o2 has the opposite sign and the system will be stable or unstable according as 
L 6 0 or L > 0. Further, if L changes sign, i t  has been established in Sturm- 
Liouville theory, which applies here, that both positive and negative values of 
w2 will occur (see, for example, Ince 1944, p. 235). The system is therefore stable 
to axisymmetric disturbances i f  and only if L < 0 everywhere in the fluid, and 
this result is a straightforward extension of that obtained by Michael (1954) to 
include effects due to radial density stratification (see also Roberts & Soward 
1972). It is evident from (3.2) that a radial decrease of angular momentum is 
destabilizing (Rayleigh 1920), as is a ‘top-heavy’ density gradient (N2 < 0) or 
a radial increase of VZ,/r‘. By inspection of (3.4) we in fact have the following 
simple bound on the growth rates of any amplifying disturbances: wf  < max L 

A case of especial interest is that of uniform rotation with angular velocity S2. 
The system will then be stable unless the magnetic field and density distributions 
are such that 

(3.5) 

somewhere in the fluid. Clearly if the fluid rotates ‘rapidly’, in the sense that 

V$/r$ + N :  < Q2 (3.6) 

(w = W R + i 0 I ) .  

T( @/r2)’ - N2 > 402 

(where an asterisk denotes ‘typical magnitude of’), and the magnetic field 
gradient is moderate (e.g. B, cc r S )  the system is then thoroughly stable to axi- 
symmetric disturbances. 

An investigation of the energetics behind (3.5) proves helpful in the physical 
interpretation of the results in @ 5  and 6. Consider the interchange of two thin 
rings of fluid, both of volume 7,  one initially situated a t  r = r, permeated by an 
azimuthal magnetic field B, and the other initially at r = r b  permeated by a 
magnetic field B,. Denote their angular velocities and densities similarly by 
UJr, and Ub/rb, and pa and pb respectively. We investigate first the increase (or 
decrease) in magnetic energy resulting from such an exchange. If A is the cross- 
sectional area of any ring the magnetic flux threading it is BA, which must re- 
main constant by virtue of the perfect conductivity of the fluid. Since the fluid 
is incompressible the ring’s volume 2 m A  must also remain constant, so the 
quantity B/r is conserved for each ring during its motion. The magnetic fields 
permeating the rings in their new positions are thus B,r,/r,, and BarbIra. The 
concomitant increase in magnetic energy is therefore 

-T(Bf/rg - B:/rt) (rg - r:)/2p 

and unless B;/r2 is everywhere a decreasing function of r it is possible to select 
rings for which this energy change is negative. In  this way the radial increase of 
an azimuthal magnetic field can lead to instability. 

This tendency may or may not be promoted by the basic radial density 
gradient, the increase in gravitational potential energy due to the ring exchange 
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E'urther, we have yet to consider the concomitant change of kinetic energy. In  
this respect we note that since axisymmetric disturbances to the azimuthal 
magnetic field are themselves azimuthal the induced hydromagnetic torque 
V x (B . VB) on individual fluid elements vanishes everywhere. Further, the 
axial component of the buoyancy torque (Vp)  x g is zero when the perturbations 
are axisymmetric and g has no azimuthal component. There is therefore no 
axial torque on any fluid ring, which must accordingly conserve its angular 
momentum as it expands or contracts. The velocities of the rings in their new 
positions are thus Ubrb/ra and Uara/rb, so that the increase in kinetic energy re- 
sulting from the interchange is J#T( Ugrt - Uirr",) (r; - r i ) / r i r ; .  If we finally let 
rb - ra -+ 0 we find that the condition for instability L > 0 is equivalent to the 
requirement that the algebraic sum of the three changes in energy computed 
above should represent a net decrease in energy of the system. 

The extremely steep increase of magnetic field with radius required for in- 
stability when the fluid is in 'rapid' uniform rotation is evidently a consequence 
of the large amount of work needed in this case to exchange two rings while 
conserving the nngular momentum of each during transit. Such an interchange will 
not be subject to this constraint when performed in a non-axisymmetric manner, 
for the net axial hydromagnetic torque on an individual ring (which will, of 
course, be distorted during transit) will then no longer vanish. This is reflected 
by the results of $95 and 6, for comparatively modest magnetic field gradients 
then suffice for instability. In  contrast to the axisymmetric case such instability 
then occurs in the form of slow hydromagnetic waves which grow in amplitude 
with time, and in the next section we derive a simple constraint on their azi- 
muthal propagation. 

4. Azimuthal propagation of non-axisymmetric amplifying waves 
Equation (2.15a) may be rewritten in the form 

whence multiplying by the complex conjugate of $ and integrating between 
r = r l  and r = r2 (where $ vanishes) we find 

We now set w = w,+iw,, noting that w, = ' ~ ~ - r n U ~ / r  is in general a function 
of r while wI  = vI is a constant (see equation (2.9)). Taking the imaginary part 
of (4.2) we conclude that 

where (4.4) 
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and S,(r) = wR (:& -+nV, ) 2  (V2”; - G) 

We shall concentrate on the case in which the angular velocity Q ( r )  = U,/r 
of the fluid is in the same sense (positive, say) throughout the interval 

rl 6 r 6 r2,  

and denote the (constant) angular propagation velocity ax/m of the disturbance 
relative to an inertial frame by QP. By inspection of (4.3)-(4.5) it is then clear 
that if the magnetic field is purely azimuthal all amplifying non-axisymmetric 
modes in this case have wR/m < 0 somewhere and thus 

LID < max{G(r)}. (4.6) 

For a uniformly rotating homogeneous fluid this result reduces t o  that obtained 
in A, namely that all such modes propagate ‘westward’. Effects due to radial 
density stratification evidently leave the result unchanged, even in situations 
when a ‘top-heavy’ density gradient constitutes the very source of the unstable 
modes under discussion.? Further, by inspection of (4.3)-(4.6) we see that even 
when the magnetic field has an axial component the constraint (4.6) still applies 
to all those modes for which InV,I < Im&/rl throughout the interval rl < r < r2. 

Slow amplifying waves: bounds on their azimuthal phase speeds 

We suppose here that (a )  the rotation of the fluid is uniform, (b)  the magnetic 
field is purely azimuthal and ( c )  radial, axial and azimuthal wavelengths are all 
of the same order r* (the magnitude of the first of these being crudely defined 
locally as 2n]$1/1$’]). Anticipating that when Q2 B V $ / r f  + N $  the slow modes 
will have IwI2 - V2,(Vqr;2+N$)/S22r$ (see $6 and Acheson &Hide 1973)we can 
write F + m2Vg/r2 with error 0{ (V$r$2+N%)/Q2)  and thus find that (4.3) may 
be written as 

with the same small degree of error, where 

(4.7) 

The fact that S,(r) must evidently vanish somewhere in the interval rl < r 6 r2 
immediately imposes the following upper and lower bounds on the azimuthal 
propagation speeds of the slow amplifying hydromagnetic waves : 

in addition to the ‘westward’ propagation wRQm < 0 already proved above. 
We note that these particular bounds depend on neither the sign nor magnitude 

t See ‘Note added in proof’, part (i), p. 623. 
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of N 2 .  The role of density stratification becomes, however, more evident when 
we derive further bounds in the next section on not only the phase speeds of 
these waves but also their growth rates. 

5. Conditions necessary for the amplification of non-axisymmetric 
disturbances 

We confine attention, as in the previous subsection, to the case of uniform 
rotation and azimuthal magnetic field, so that wR is constant. On dividing (4.2) 
by w2 and equating the imaginary part of the resulting left-hand side to zero we 
find 

where 

(5.4) 
We have shown that any non-axisymmetric unstable mode must have 

W R r n Q  < 0 )  

and if m2Vj 2 3 r 2 4  everywhere in the interval rl < r < r2 then &(r)  must 
therefore be positive. The term &(r)  can easily be shown to exceed 

nz(m2- 4) Vg/r21w(2 

if Iml > 1 and - 5n2V3/r21~1~ if Iml = 1. We thus conclude that for the amplifi- 
cation of modes such that m2V$ 2 3r2u$ everywhere (amongst which, for 
example, are the 'slow' hydromagnetic waves) the magnetic field and density 
distributions must be such that 

somewhere in the fluid. 

Slow amplifying waves: a 'quadrant' theorem 

As in the second part of Q 4 we now focus attention on the 'slow) waves character- 
istic of a 'rapidly' rotating fluid and suppose? that radial, axial and azimuthal 
wavelengths are all of the same order r* . Anticipating again that 

N V$(V$r;2+N$) /Wr2,  

we find that the coefficient of \$ I2  in (5.1) may be replaced with error 

0{( Vfr*2+N%)2r$/Q2'Vf} 

t See 'Note added in proof', part (ii), p. 624. 
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FIGURE 1. Illustrating the quadrant of the complex c plane to which slow amplifying waves 
are confined when the rotation is uniform and the magnetic field is azimuthal. Both m and 

are here reckoned positive. The radius of the quadrant is $lOl-l max (r(  Vi/r")' -N2} 
when 1.21 > 1 and the density distribution is 'bott'om-heavy'. 

by I w I - ~ S ~ ( ~ ) ,  where 

We thus conclude that to avoid violation of (5.1) S, must somewhere be negative. 
For unstable modes with lrnl > 1 this therefore implies that (since Qmw, < 0; 
see $4)  

4($El(ug+wf) < max ( r 
which in turn implies that 

where c E wlrn. Thus in the presence of a 'bottom-heavy ' density distribution 

While for any particular mode more stringent bounds can be found by applying 
(5.8) this last inequality is in some respects the most useful, since the right-hand 
side is independent of both m and n. The bounds for the Iml = 1 mode seem 
rather less stringent; the term - (m2- 4) V$/r2 in (5.8) is replaced by 5VB/r2 (as 
indeed a comparison of (5.8) and (5.5) would suggest) and an additional term 
5V2,/r2 accordingly appears in the curly brackets in (5.9). 

Taking any of these results in conjunction with the constraint c R a <  0 al- 
ready derived in Q 4 we find that the complex wave speed c of any unstable slow mode 
must l ie within one quadrant of the complex c plane (cf. Howard's (1961) semicircle 
theorem for Kelvin-Helmholtz instability), as shown in figure 1. 
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6. Two specific examples 

examples. We restrict attention in each to the case of uniform rotation. 
We now illustrate the general results of $3 3, 4 and 5 by means of two specific 

Both B,lr and R, constant, no buoyancy 

In this case it proves convenient to treat the eigenvalue problem formulated in 
terms of the perturbation pressure. The quantities P, Q and 0 are all constant 
and (2.16a) reduces to 

We observe by inspection of (6.1) and the boundary conditions (2.16b) that Q/F,  
while dependent on m and n, must evidently be independent of both the magnetic 
field and Q in this case. In  particular, regardless of the values of BB/r and B,, 
the quantity Q/F must retain its non-hydromagnetic value corresponding to 
the same m and n, namely - 2Qz/w0. Here wo denotes the appropriate eigenvalue 
of the non-hydromagnetic problem (discussed at length in Chandrasekhar 1961, 
$68) and will typically be of order a. Thus t o  every eigenvalue wo (which is, of 
course, real) of the corresponding problem with B, and B, set equal to zero there 
correspond two eigenvalues o of the present problem given by 

o2--w0o- (mr‘ -+nV ,)2 --- !:p+nE) = 0 ,  

which has roots 

We first investigate the case V ,  = 0, anticipating that since the left-hand side 
of (5.5) is zero for the equilibrium state assumed here any non-axisymmetric 
unstable modes must either have lrnl = 1 or be of other than ‘slow’ wave type. 
In  fact it turns out that they have both these properties, for when V ,  = 0 

The non-hydromagnetic eigenvalues wo have the property Iwo/QI 6 2 (Chandra- 
sekhar 1961). It therefore follows from (6.5) that only the Iml = 1 modes can be 
unstable and then (as evinced by (6.4)) only when Vg > !d2r2, so that they can- 
not possibly be of ‘slow’ wave type. Note also that w0mQ must be negative if w 
is to have a non-zero imaginary part, and that w,m!d is then also negative, so 
that the amplifying hydromagnetic waves propagate westward in accord with 
the general results of $4. 

When the magnetic field has both azimuthal and axial components we note 
from (6.3) that instability implies that 
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so that amplifying modes such that InE[ < ImV,/rl must propagate westward in 
accord with $4, Again VZ, > Q2r2 is a necessary condition for their amplification, 
so that they cannot be of ‘slow’ wave type. It is natural to inquire whether this 
westward drift persists whatever the relationship between the axial and azi- 
muthal components of magnetic field. In  fact it does not, as we now show. Set, 
for example, V,/r = 451 and m = 1. We are at liberty to choose w,, = @2, but 
this will then only be a legitimate eigenvalue of the non-hydromagnetic problem 
for certain n (see Chandrasekhar 1961). Whatever the value of n, now choose V ,  
so that nV, = - 5Q. This violates the condition InV,I < 1 mJ$/rl by which amplify- 
ing waves are constrained to propagate westward, and the resulting eigen- 
frequencies obtained from (6.3) are then w = $51(1 +i2/15), one of which does 
indeed correspond to an eastward-propagating amplifying hydromagnetic wave. 

Narrow gap between the cylinders 

Suppose now that the radii of the cylinders are nearly equal so that the gap 
width d = r2 - rl is very much less than the mean radius rM = &(r, + r2 ) .  Suppose 
also that the magnetic field varies by a factor of order unity over a radial distance 
of order rM (so that it varies by only a small amount across the gap between the 
cylinders). We shall focus attention in this example on modes for which the 
azimuthal wavelength is of order rM while both radial and axial wavelengths 
are of order d. Thus m, nd, d$‘/@ and d2@”/$ will all be O(1). We assume that 
both Q/F and G / F  are O(l) ,  and justify this assumption u posteriori. All the 
terms in the coefficient of 9 in ( 2 . 1 6 ~ )  except - Gn2/F (which is of order d-2) 
are then of order rk2. The second term in the equation is clearly 0($/drM)  and 
the first O(@/d2). Thus we find to a first approximation (or, more precisely, with 
error O(d/rM)) 

(6.7) 

To the same approximation we may replace the function G/F in (6.7) by its 
value at the mean radius r = rM. The equation then has solutions 

j3 cc cos Z(r - r l ) ,  

where the radial wavenumber I is an integral multiple of n /d  in order that the 
boundary conditions (2.16b) be satisfied (to the appropriate order of accuracy). 
Thus 12F +n2G = 0, and on making the final assumption (rn6r-l +nc)2 9 IwI2 
(thus seeking ‘slow ’ hydromagnetic wave solutions), again to be justified a 
posteriori, we obtain the following dispersion relationship : 

fY’ - (Gn2/F) @ = 0. 

Here all apparent ‘variables’ are to be regarded as evaluated at  r = rAf. 
We begin by considering the case when the magnetic field is purely azimuthal, 

i.e. V,  = 0. If 9? = 1N(2r$/Vj does not greatlyexceed unity 1w1 will clearly be of 
order Vi/51r&. The various assumptions Q/F - 1, GIF N 1 and m2Vt/r2 B ( w ( ~  
are then all valid provided only that 51zrk >> Vg. With regard to the unstable 
modes given by (6.8) we note first that they all propagate westward in accord 
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with the general result of 0 4. They may be caused by a radial increase of Vj / r2 ,  
a ‘top-heavy’ density gradient (N2 < 0) or a combination of these effects. No 
unstable ‘slow’ modes occur unless 

(6.9) 
which is a slightly more stringent requirement than (5 .5)  (bearing in mind that 
m2/n2r& N dz/r$ < 1 in this example). Equation (6.9) displays the dual role 
played by the magnetic field: while its direct effect is to impart ‘elasticity’ t o  
the system through the restoring force resulting from twisting of the ‘equivalent 
elastic strings’ (corresponding to the term m2V@2) and hence to promote 
stability (as observed by Braginsky (1967)’ who briefly studies a configuration 
almost equivalent to this ‘narrow-gap’ system in the course of his investigation 
of the hydromagnetic convective instability of a rotating fluid sphere; see 0 7), 
this may be more than offset by the tendency for a radial increase of Vg/rz to 
promote instability. We note in passing that (6.8) is evidently compatible with 
the bounds (4.9); it is only a shade more difficult to show that it is also compatible 
with the bounds (5.8) and (5.9). 

The stabilizing influence of a ‘bottom-heavy’ density gradient ( N 2  > 0) is 
evident from (6.8) and (6.9). Note (although the assumptions made in deriving 
(6.8) then require re-evaluation) that  as 93 increases not only is the stabilizing 
effect stronger but the period of the wave is ultimately substantially decreased, 
so that when 9 $ 1 we have the curiously hybrid (non-amplifying) wave with 

r (  Vt/r2)’  - N 2  > m2Vi/r2, 

frequency 
(6.10) 

(cf. Acheson & Hide 1973, equation (6.18)). 
The eigenfrequencies of the axisymmetric modes may be calculated in a similar 

fashion. With m = 0 and rVi/G of order unity (as assumed previously) we again 
obtain PF + n2G = 0. I n  this case, however, F = - w2 and 

G =  - w2 - r( V$/r2)’ + N2 + 4Q2 

(see equations (2.12)-(2.14)). Accordingly 

(6.11) 

and disturbances amplify only when (3.5) is satisfied, while 

[r(V8/r2)’ - f121r=r?ll > O[~2Vi/r21r=vz,1 (6.12) 

is sufficient for non-axisymmetric instability, as evinced by (6.8). As in the 
homogeneous case (Acheson 1972) these criteria differ widely a t  rapid rotation 
speeds; indeed (6.12) is remarkably similar to the narrow-gap criterion for the 
instability of the corresponding non-rotating system !t The reason is clear from 

t This does not imply that the stability of the system cannot be guaranteed by suffi- 
ciently rapid rotation; one presumes that it can, but only inasmuch as both the frequencies 
and the growth rates of the amplifying slow modes steadily decrease as C2 increases (see 
(4.9), (5.9) and (6.8)) and dissipative eflects, however small, ultimately suppress the 
instability mechanisms of this paper for some sufficiently large a ;  see Acheson & Hide 
1973. 
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the arguments of $3: an exchange of two rings in a non-axisymmetric manner 
entails only a comparatively modest amount of work in order t o  twist the lines 
of force permeating the rings as they themselves get distorted in transit, and this 
is evidently what the right-hand side of (6.12) represents, being proportional to 
both the square of the magnetic field BB and the square of the amount of twisting 
m. 

We have so far explored (6.8) only in the case V ,  = 0. If, however, a small 
axial magnetic field component is present such that V,/V, d/rM (thus ensuring, 
in view of the supposition here that m N 1 and n N d-l, that mV,/r N nV,) the 
various approximations made in deriving (6.8) are still all covered by the require- 
ment Q2gM & V:. Evidently not all the amplifying waves are constrained to 
propagate westward, although this property still applies for those such that 
Incl < lmV,/rl, in keeping with the results of $4. Note also that azisymmetric 
slow modes are now possible. Further, the criterion for their amplification is 
comparable with that for their non-axisymmetric counterparts and has a similar 
physical interpretation. This disappearance of the otherwise crucial difference 
between stability with respect to (a) axisymmetric and (6 )  non-axisymmetric 
disturbances is due to the fact that when an axial magnetic field component is 
present the lines of force are distorted (and the constraint of angular momentum 
conservation accordingly relaxed) in both cases. 

7. Concluding remarks 
The analyses of 995 and 6 concerning the circumstances in which non- 

axisymmetric instability occurs have been restricted to the case of uniform 
rotation. The problem when (Ue/r)’ =k 0 is apparently more difficult, but im- 
portant to any serious geophysical application of this study (see below). If 
U,/r = Q + UD/r, where the velocity deviations U, from ‘rapid’ rigid-body rota- 
tion are of order V, Qgl(V, r ; l+  N , )  or smaller (so that w/m = a/m - Ue/r retains 
the typical ‘slow’ values assigned to it above throughout the interval rl < r < r,, 
which it may not do otherwise), it is tempting to speculate here (by inspection 
of (2.15) and consideration of the modifications to (6.8) due to non-uniform 
rotation; see also Roberts & Soward 1972; Braginsky 1967) that the rough 
criterion (6.12) for ‘slow’ wave amplification is simply modified in the following 
way : 

but the significance of this has yet to  be demonstrated. Note that the new term 
would not in general be negligible unless U, were small compared with a typical 
‘slow’ wave speed. 

With regard to the possibility expressed in A that the phenomena investigated 
there and in this paper may not be especially sensitive to the shape of the con- 
tainer (the earth‘s core, of course, being spherically bounded) we can offer at 
present only the following remarks. First, it would be compatible with the idea 
of hydromagnetic effects significantly relaxing the gyroscopic constraints due 
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to rapid rotation on relative fluid motions (which is suggested by a variety of 
novel hydromagnetic phenomena in rotating fluids; see Acheson & Hide 1973), 
inasmuch as these strong constraints (most vividly exemplified, albeit in an 
extreme case, by ‘Taylor columns’; see Greenspan 1968, p. 9) are essentially 
responsible for the extreme sensitivity of rapidly rotating rzon-hydromagnetic 
flows to the boundary conditions. Second, if (7.1) were to be of some relevance to 
spherical systems (notwithstanding the fact that the basic state would then 
typically be characterized by variations with both r and z )  it would predict no 
amplifying ‘slow’ modes in the special case N = 0, U, = Vi/2Qr, which is in 
agreement with the results of an unpublished study by Booker (1972). Third, if 
the magnetic field is purely azimuthal and V,/r is constant the relation (6.5) 
between the eigenvalues w and those (w,,) of the corresponding non-hydromagnetic 
problem holds in a sphere (Malkus 1967), and since 1w0/aJ 6 2 in that case also 
(Greenspan 1968, p. 52) there again only the Irnl = 1 modes can be unstable 
(and then only if T‘g > @r2) and, more significantly, they must propagate west- 
ward, just as in the cylindrical case. 

It is unfortunate that in spite of the various developments outlined in this 
paper nothing approaching a simple physical picture of why the amplifying 
waves tend to propagate towards the west has yet emerged. Perhaps, in any 
case, it is misleading to  emphasize this property in connexion with the geo- 
physical problem at the expense of others. Thus, Braginsky (1964, 1967) has 
pointed out that by virtue of their asymmetry the waves are not encompassed 
by Cowling’s anti-dynamo theorem, and the concomitant modifications to t*he 
mean state resulting from their amplification may form an integral part of the 
process by which the magnetic field is actually maintained against ohmic decay. 
Whichever aspect of the geophysical problem one has in mind their finite ampli- 
tude development is evidently of crucial importance (see Roberts & Soward 
1972). Perhaps in this connexion we may conclude here with one elementary 
speculation. If (7.1) is indeed germane to the stability properties of the earth’s 
liquid core it is clear that a radial increase of magnetic field has a destabilizing 
influence while a radial increase of angular velocity is stabilizing. These two will 
not be independent, however, for the azimuthal magnetic field will presumably 
be to some extent a consequence of the differential rotation ‘winding up’ the 
(somewhat smaller) meridional field. Accordingly, however the growth of the 
waves modifies the differential rotation (which will then have a greater or lesser 
stabilizing or destabilizing tendency, as the case may be), it  seems likely that 
this will in turn change the azimuthal magnetic field in such a way that it then 
has precisely the opposite tendency as regards influencing the stability of the 
system and hence its future development, suggesting that the combination of 
these effects may constitute to some extent a self-regulation mechanism for the 
system as a whole. 

It is a pleasure to thank Dr R. Hide for many stimulating discussions and Dr 
A. M. Soward and a referee for their helpful criticism of a previous version of this 
paper. I am also indebted to the Natural Environment Research Council for a 
Research Fellowship during the tenure of which the above research was carried 
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out. The paper was extensively revised in the course of a summer visit to the 
National Center for Atmospheric Research, Boulder, Colorado; and I am most 
grateful to the Advanced study Program for their kind hospitality during that 
period. 

Appendix. Note on some effects of an axial shear flow 
We consider here the axisymmetric stability of the system discussed in $ 3  

when an axial shear flow U,(r) is also present. It then no longer follows that the 
eigenvalues are either real or purely imaginary. Making the transformation 
$ = w-*7 in (2.15), where w = a - n q  (see equation (2.9)), multiplying by the 
complex conjugate of 7 and integrating between the boundaries we find 

The imaginary part of this equation gives 

j: wIrl 7'12 dr + j ( ( ~ w * ) ,  - tn2( U L ) ~  wI> 1 w1-2 rlr 12 dr = 0, (A2) 

where w* denotes the complex conjugate of w,  and from this we conclude that 
any unstable modes must be such that w ~ ~ ( H w * ) ,  - an2( UU;)2 < 0 somewhere in 
the fluid. Using (2.15b) we find that this implies the following simple bound on 
the growth rates: 

which in turn implies that a sufficient condition for axisymmetric stability is 
that the term in curly brackets is everywhere negative (cf. the necessary and 
suficient condition of $3). The inequality (A 3), which is an elementarygeneraliza- 
tion of a result obtained by Howard & Gupta (1962), suggests that any axial 
shear flow, whatever its profile, tends to destabilize the system. 

The present author shares their difficulty in obtaining any general results 
pertaining to the non-axisymmetric stability of the system. Even in the absence 
of hydromagnetic effects the problem is particularly interesting and challenging 
in view of the evidence from studies by Ludwieg (1962) and Pedley (1968) (see 
also Joseph & Munson 1970) that, despite the fact (as (A 3) clearly shows, if we 
set V, = N = 0) that for the amplification of axisymmetric disturbances in a 
uniformlyrotating fluid an axial shear flow such that &(dU,/dr)2 > 4@isnecessary, 
a much smaller axial shear flow may suffice to destabilize the system in a non- 
axisymmetric manner (cf. the criteria (3.5) and (6.9)). Whether or not this link 
with the results of the present paper can be exploited to the mutual benefit of both 
hydromagnetic and non-hydromagnetic investigations remains to be seen. 

Note added in proof. (i) Perhaps it should be made more explicit that all the 
results of this paper are derived on the understanding that n is non-zero. Unless 
this limitation of the analysis is borne in mind it is tempting to make inferences 
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from it, particularly with regard to some related non-hydromagnetic problems, 
which are demonstrably incorrect. Suppose, for example, that the fluid is 
rotating uniformly. It may easily be shown from (2.15) that in the absence of 
a density gradient, or in the presence of a stable one, i.e. N 2  3 0, any modes 
amplifying as a result of a radial increase of magnetic field must then have 
n =i= 0. Modes generated by an unstable density gradient, on the other hand, 
need not be of this type. Further, while an immediate consequence of setting 
n = 0 in (2.15) would be vRuI = 0 (again assuming uniform rotation), i.e. no 
amplifying wavelike disturbances, this would not be the case in a bounded 
system whose depth changes with distance from the rotation axis. As an example 
we note the study by Busse (1970) of thermal instabilities in a rapidly rotating 
fluid sphere. Convection occurs in that case in the form of two-dimensional cells 
aligned with the rotation axis, and no information about such (n = 0) modes 
can legitimately be derived from the results of this paper. As Busse shows, they 
in fact propagate eastward in that case by essentially the classic Rossby wave 
mechanism. 

(ii) More recent calculations by the author show that this supposition, while 
conceptually convenient, is not strictly necessary. Inequalities (5.7), (5.8) and 
(5.9) can be derived in roughly the manner shown merely by supposing that 
lw12 may be neglected in comparison with m2Vi/r2 (the ‘slow wave’ approxi- 
mation) without further reference to the relative sizes of the various wavelength 
components. 
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